Narcolepsy susceptibility gene CCR3 modulates sleep-wake patterns in mice

نویسندگان

  • Hiromi Toyoda
  • Yoshiko Honda
  • Susumu Tanaka
  • Taku Miyagawa
  • Makoto Honda
  • Kazuki Honda
  • Katsushi Tokunaga
  • Tohru Kodama
چکیده

Narcolepsy is caused by the loss of hypocretin (Hcrt) neurons and is associated with multiple genetic and environmental factors. Although abnormalities in immunity are suggested to be involved in the etiology of narcolepsy, no decisive mechanism has been established. We previously reported chemokine (C-C motif) receptor 3 (CCR3) as a novel susceptibility gene for narcolepsy. To understand the role of CCR3 in the development of narcolepsy, we investigated sleep-wake patterns of Ccr3 knockout (KO) mice. Ccr3 KO mice exhibited fragmented sleep patterns in the light phase, whereas the overall sleep structure in the dark phase did not differ between Ccr3 KO mice and wild-type (WT) littermates. Intraperitoneal injection of lipopolysaccharide (LPS) promoted wakefulness and suppressed both REM and NREM sleep in the light phase in both Ccr3 KO and WT mice. Conversely, LPS suppressed wakefulness and promoted NREM sleep in the dark phase in both genotypes. After LPS administration, the proportion of time spent in wakefulness was higher, and the proportion of time spent in NREM sleep was lower in Ccr3 KO compared to WT mice only in the light phase. LPS-induced changes in sleep patterns were larger in Ccr3 KO compared to WT mice. Furthermore, we quantified the number of Hcrt neurons and found that Ccr3 KO mice had fewer Hcrt neurons in the lateral hypothalamus compared to WT mice. We found abnormalities in sleep patterns in the resting phase and in the number of Hcrt neurons in Ccr3 KO mice. These observations suggest a role for CCR3 in sleep-wake regulation in narcolepsy patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmental divergence of sleep-wake patterns in orexin knockout and wild-type mice.

Narcolepsy, a disorder characterized by fragmented bouts of sleep and wakefulness during the day and night as well as cataplexy, has been linked in humans and nonhuman animals to the functional integrity of the orexinergic system. Adult orexin knockout mice and dogs with a mutation of the orexin receptor exhibit symptoms that mirror those seen in narcoleptic humans. As with narcolepsy, infant s...

متن کامل

Sleeping Beauty, Mice, & Dogs: Cell Death in Narcolepsy

Sleep is important and required for the survival and normal homeostasis of vertebrates. Disturbances in the sleep-wake cycle can lead to many sleep disorders, one of which is narcolepsy. Narcolepsy is a disabling sleep disorder characterized by excessive daytime sleep, cataplexy (sudden loss of muscle tone in response to strong emotion or laughter), hallucinations, and sleep paralysis. To date,...

متن کامل

H1N1 influenza virus induces narcolepsy-like sleep disruption and targets sleep-wake regulatory neurons in mice.

An increased incidence in the sleep-disorder narcolepsy has been associated with the 2009-2010 pandemic of H1N1 influenza virus in China and with mass vaccination campaigns against influenza during the pandemic in Finland and Sweden. Pathogenetic mechanisms of narcolepsy have so far mainly focused on autoimmunity. We here tested an alternative working hypothesis involving a direct role of influ...

متن کامل

Histamine Transmission Modulates the Phenotype of Murine Narcolepsy Caused by Orexin Neuron Deficiency

Narcolepsy type 1 is associated with loss of orexin neurons, sleep-wake derangements, cataplexy, and a wide spectrum of alterations in other physiological functions, including energy balance, cardiovascular, and respiratory control. It is unclear which narcolepsy signs are directly related to the lack of orexin neurons or are instead modulated by dysfunction of other neurotransmitter systems ph...

متن کامل

Delayed orexin signaling consolidates wake and sleep : physiology and modeling

Orexin-producing neurons are clearly essential for the regulation of wakefulness and sleep as loss of these cells produces narcolepsy. However, little is understood about how these neurons dynamically interact with other wakeand sleep-regulatory nuclei to control behavioral states. Using survival analysis of wake bouts in wild type and orexin knockout mice, we found that orexins are necessary f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017